
 Feral Topographies: Modelling Wildlife-Environment Interactions 
 through 3D Topography and Machine Learning 

 Crystal Griggs  [1]  , Chi-li Cheng  [1]  , Joris Komen  [1] 

 Massachusetts Institute of Technology 
 cgriggs@mit.edu, chilic@mit.edu, komen@mit.edu 

 1 Abstract 

 The ability to understand and predict the complex interactions between wildlife species and their 
 environments is crucial for effective conservation and wildlife management. This study aims to investigate 
 these interactions by integrating topographic and land feature data with wildlife movement (GPS) data, 
 and utilizing machine learning techniques to analyze patterns and predict how topographical or 
 environmental changes may affect wildlife behavior. Our approach is multifaceted and attempts to find 
 modal solutions for this complex problem. We utilize convolutional neural networks, Conditional 
 Generative Adversarial Networks and Agent-Based Modeling, to find the embedded multidimensional 
 relationships between 3D topographical information, land feature data and GPS tracking of animal 
 movement. 

 Figure 1: A conceptual framework for Elephant Movement Prediction 

 2 Introduction 

 The impacts of human land use changes and climate change are among the many factors that disrupt 
 wildlife behavior and the ecosystems that they critically rely on for survival. These pressures underscore 
 the critical need for more sophisticated, targeted interventions to ensure the preservation of non-human 
 species. Central to the development of these interventions is a comprehensive understanding of the 
 complex interplay between wildlife and their habitats, which in turn can elucidate the potential 
 ramifications of these disturbances and help inform on effective conservation strategies. 

 Analyzing animal movements is an important step toward understanding the complexity and fragility of 
 ecosystems and ecologies. Animal movements offer potential windows into habitat selection, population 
 dynamics, and group behavior. According to  Rew et  al. 2019  , the development of global positioning 
 systems (GPS) and advanced research and global observation satellites (ARGOS) have accelerated 
 animal movements studies and created new opportunities to model these behaviors. 

 Moving beyond the traditional approach of fine-tuning a singular computational model to address a wildlife 
 behavioral research problem, we adopt a more holistic strategy. Our methodology focuses on the 
 investigation and implementation of multiple models and the interconnections between them to uncover 
 an array of predictions that inform one another. The intention is to foster an understanding of whether the 
 integration of these models can lead to a more robust and insightful understanding of wildlife behavior 
 and their interactions with the environment. We explore how different machine learning models, each with 
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 its unique attributes, can contribute to a comprehensive analytical framework that can identify patterns 
 that may not be apparent when using a singular model. Our goal is to provide a broader, multi-faceted 
 perspective on wildlife behavior, potentially leading to more effective conservation strategies. 

 3 Literature Review/Background 

 Many efforts have been made to model animal movements using both traditional statistical methods and 
 machine learning. Patterson et al, using maximum likelihood and Monte Carlo (MC) methods, and a 
 hidden Markov model (HMM), proposed a classification method for two animal behavior states: transient 
 and resident. Using hidden Markov processes, MoveHMM showed that probability-based prediction is 
 possible by using features such as animal step length and turning angle. 

 Deep learning has been used to fill the observation gap that frequently occurred while tracking wild 
 animals with low frequency gps technology.  Hirakawa  et al. 2018  used inverse reinforcement learning to 
 predict missing trajectories by estimating the gap as a reward function.  Browning et al. 2018  predict  diving 
 behavior of seabirds by utilizing combined GPS and time depth record (TDR) from 108 individuals. The 
 authors trained deep learning models for predicting the behavior of European shags, common guillemots, 
 and razorbills, and achieved 94% and 80% prediction accuracy of non-diving and diving behavior. 

 According to  Tuia et al. 2022  , inexpensive and accessible  sensors are and will continue to accelerate 
 data acquisition in animal ecology. There are immense opportunities for large-scale ecological 
 understanding, but these tools are limited by current processing approaches which inefficiently distill data 
 into information for ecologists, local communities and conservation efforts to use effectively.  Tuia  et al. 
 argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining 
 machine learning approaches with domain knowledge and by incorporating machine learning into 
 ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling 
 tools. 

 Parvizpalangpour, Venayagamoorthy, and Duffy 2011  describe methods to assess the impact of large 
 nutritional values and destructive foraging of Elephants in South African wildlife reserves using particle 
 swarm optimization (PSO), PSO initialized backpropagation and PSO initialized backpropagation through 
 time algorithms to adapt a recurrent neural network's weights for migration prediction. 

 (Rew et al. 2019)  proposed a novel approach for predicting  animal movements using a predictive 
 recurrent neural network (RNN). Their model compensates for missing geolocation records using random 
 forest regression. They interpolate the missing records by using a random forest based on animal 
 movement features and environmental features such as terrain and weather. The authors then grouped 
 geolocations by various units and created a sequence of movement density images, which represent 
 movement trends of animals; a movement prediction model is then built by training PredRNN++ using 
 these sequence data. 

 Berti et al. 2022  developed ‘enerscape’, software  that   integrates a general locomotory model for terrestrial 
 animals with GIS tools in order to map energy costs of movement in a given environment, resulting in 
 energy landscapes that reflect how energy expenditures may shape habitat use.  enerscape  only requires 
 topographic data (elevation) and the body mass of the studied animal. Other work in the field of machine 
 learning and behavioral wildlife ecology is concerned with automatically identifying, counting, and 
 describing wild animals in camera-trap images with deep learning  (Norouzzadeh et al. 2018)  and deep 
 learning for pose tracking  (Pereira et al. 2022)  . 

 Predictive analysis of wildlife behavior is a crucial tool for long term conservation efforts, currently there 
 are no effective working models to predict where wildlife will move to next given a topographical or land 
 feature change. The ability to predict future movements of a species would provide a useful tool for land 
 management by assessing the future impact of a species by location and proposed land augmentation. 
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 4 Methodology 

 Our research focussed on a selected species and specific geographical area. Data collection involved the 
 acquisition of  3D topographical data, wildlife GPS data, and integrating these datasets for analysis. We 
 attempted to employ multimodal machine learning techniques to model species movement patterns in 
 response to topographical and environmental features. 

 Dataset: 

 This research required the creation of a comprehensive dataset that combines Global Positional System 
 (GPS) data, Digital Elevation Model (DEM) data, and land features suitable for machine learning analysis. 
 The combination of these different sources of data offers a rich and varied dataset that facilitates a 
 deeper understanding of the complex connections between wildlife species and their environments. 

 The GPS data utilized in this study is sourced from research led by Frank van Langevelde from the 
 Wildlife Ecology and Conservation Group at Wageningen University. Published in the Journal of Animal 
 Ecology in 2011, the study “The spatial scaling of habitat selection by African elephants” offers valuable 
 insights into the spatial scales at which African elephants select their habitats. This research focuses on 
 13 elephants with GPS collars located in Kruger National Park, South Africa, spanning from November 
 12, 2005, to September 21, 2008 and covering 160,000 square kilometers. This dataset contains location, 
 temperature, low frequency time steps (30 minute intervals)  and observational data of elephant behavior 
 such as foraging, drinking, walking and group interaction. Kruger National Park, one of Africa’s largest 
 game reserves, is known for its high biodiversity. It offers a complex and diverse landscape, from 
 savannah grasslands to dense forests and river systems, making it a compelling area of study for 
 understanding wildlife interactions with varied topography and land features. Leveraging the data from 
 this well-established study, our research further builds upon these insights by employing advanced 
 machine learning techniques to predict how topographical changes may impact wildlife behavior. The data 
 is made available through Movebank, an online database of animal tracking data hosted by the Max 
 Planck Institute of Animal Behavior. Movebank facilitates the archiving, analysis, and sharing of animal 
 movement data among researchers and conservationists. 

 Figure 2: GPS elephant data, DEM and Land Features  of Kruger National Park 

 In tandem with the GPS data, our dataset also employs the land features obtained from the National Land 
 Cover Database (NLCD) and Digital Elevation Models (DEM) from the Shuttle Radar Topography Mission 
 at 30m resolution. The NLCD data offers a standardized, nationwide land cover inventory which, in 
 combination with the DEMs, offers a detailed understanding of the terrain. 

 To render the data more manageable for the machine learning model, the NLCD data was processed into 
 three general categories: water, ground, and vegetation. This simplification was aimed at preventing the 
 model from being overwhelmed with excessive detail that could potentially obscure broader patterns, 



 thereby enabling the model to between learn and predict elephants’ behavior in response to fundamental 
 environmental features. The compilation of this dataset from diverse resources provides an important 
 foundation for analyzing the interactions between wildlife and their habitats. Furthermore, the systematic 
 approach used to creat this  dataset creation for application in machine learning holds significant potential 
 for future research, particularly those exploring the interface between wildlife behavior and environmental 
 factors. 

 Models: 

 Test 01: Convolutional Neural Network 

 We attempted to train a convolutional neural network with the intention of using an inverse design method 
 similar to those used for metasurface design. We conceptualized a model that formulated the path 
 functionality as an objective function and performed an optimization task that could be subject to 
 constraints. In the case of the predictive path finding, the constraints were DEMs and land features. Our 
 intention was to define a desired target DEM and have the trained network predict paths. This method 
 was unsuccessful due to the large variation in data between constraints. 

 Figure 3: Result and Training/Validation Loss of CNN 



 Test 02: Pix2Pix Conditional Generative Adversarial Network 

 We also considered the prediction of paths from a DEM as an image-to-image translation problem. For 
 this problem, we used conditional adversarial networks as a general-purpose solution for image-to-image 
 translation. These networks not only learn the mapping from input image to output image, but also learn a 
 loss function to train this mapping. I  sola et al.  2018  demonstrate that this approach is effective at 
 synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, 
 among other tasks. This solution however requires the translation of GPS vector data (that includes 
 directionality and time) to static raster based images. The same technique could also be inverted and 
 used to predict DEMs from path configurations. 

 Figure 4: Result of GAN network tests - inconclusive 
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 Test 03: Agent Based Model 

 We also developed an agent-based model (ABM) to visualize and simulate how an elephant behaves in a 
 specific environment. To achieve this, the model utilizes the GPS portion of the dataset. The geolocation 
 of the elephant's position is then associated to a position within the land features dataset. A bounding box 
 is created to track the elephant's motion and extract relevant data in the surrounding area. 

 Figure 5: The mechanism of the agent based elephant model 

 This process allows for the generation of a series of data that includes geolocations, corresponding 
 vectors representing the elephant's behavior, and data representing the environment at each geolocation. 
 By combining the elephant's trajectory with the corresponding environmental data, a comprehensive 
 understanding of how the elephant interacts with its surroundings can be obtained. 

 The agent-based model described includes a CNN-based neural network that aims to predict the next 
 motion of an agent, specifically an elephant. The model takes into consideration the environmental 
 surrounds of the agent, including topographical information, land features, and existing movement data of 
 the elephant; these data are then represented as 2D arrays. To process the input data, the model 
 combines the terrain, land features, and elephant's footprint into a three-channel representation. This 
 combined data is then fed into a CNN encoder, which is responsible for extracting relevant features from 
 the input data. The CNN encoder applies convolutional and pooling layers to capture patterns and 
 condense information. The output of the encoder is a condensed and abstract representation of the input 
 data. The features obtained from the CNN encoder are then flattened and the previous directional data 
 (represented as a 2D vector) and the timestep information are concatenated with the flattened features. 
 This concatenation combines the visual features learned by the CNN encoder with the historical motion 
 information and temporal context. The concatenated data is then passed through a series of hidden 
 layers, including fully connected layers with activation functions  Tanh  and  LeakyRelu  , to produce a 
 two-dimensional output. The output data represents the rotation angle and speed that the agent, in this 
 case the elephant, should take for its next step. The architecture of the model is described in figure 8. 

 Figure 6: Architecture of the CNN based model for simulating elephant walking 



 The initial version of the model used a vector representation for motion, but the results were not 
 satisfactory. Therefore, the model was adjusted to utilize the angle and speed representation, which was 
 found to provide more realistic predictions. 

 Test 04: Simulator 

 Finally, a dedicated simulator was developed utilizing the ABM. This simulator incorporates the DEM, land 
 features, and the elephant footprint map which serves as the backdrop for the simulation. To simulate the 
 walking path of an elephant, the simulator allows the user to specify the initial location (geolocation) of the 
 elephant, its initial motion (2D vector), and the time parameters. Based on these inputs, the model 
 predicts a new motion for the elephant's next move, which includes both a turning angle and speed. 

 Once the elephant agent is given its starting position, the system tracks the elephant's position and crops 
 a new environmental bounding box for the subsequent iteration. This ensures that the model takes into 
 account the updated surroundings as the elephant progresses along its path. With each iteration, a series 
 of points emerge, gradually forming a coherent path that represents the simulated movement of the 
 elephant. 

 The simulator and agent-based model work in succession to  integrate topographical, land feature and 
 GPS data to predict elephant movement. Users can set the initial location, initial motion, and time 
 parameters for the elephant. The model then predicts the next step distance, direction, turning angle and 
 speed of the elephant. As the simulation progresses, the system tracks the elephant's movement, 
 updates the environment accordingly, and generates a series of points that ultimately form a path, 
 capturing the simulated walking trajectory of the elephant. 

 Figure 9 showcases different conditions simulated by the agent-based model. In the image on the 
 right-hand side, a time cycle is introduced, with a period of 30 minutes between each point. the time 
 updates throughout the simulation, allowing the elephant agent to experience varying conditions from 
 daytime to nighttime. This dynamic time setting provides insights into how the elephant's behavior may 
 differ at different times of the day. 

 The subsequent two images depict surreal conditions where time is fixed. In the middle image, the time is 
 constantly set at noon, while in the right-hand image, the time is continuously set at midnight. These 
 fixed-time scenarios enable the observation of the accumulating points (path) to gain a deeper 
 understanding of how elephant behavior may differ between daytime and nighttime settings. Building on 
 the research by Frank van Langevelde, the resulting paths in these different temporal contexts may 
 provide researchers with valuable insights into how elephants navigate and interact with their environment 
 at distinct times of the day. These simulated conditions provide a unique perspective on the behavioral 
 patterns of elephants, shedding light on potential variations influenced by time factors. 

 Figure 7: Temporal Influence on Elephant Walking Patterns. 



 Evaluation: 

 The success of our research is measured by the model’s accuracy in predicting species movement 
 patterns, its understanding of crucial environmental factors influencing wildlife behavior, and the ability to 
 derive effective conservation strategies based on these insights. 

 To evaluate our model’s performance, we implement the hold-out validation method, which is an effective 
 technique to ensure the robustness of the model and prevent overfitting. We partition our dataset into a 
 training set (80%) and validation set (20%). The model is trained on the training set, learning the 
 underlying patterns and relationships within the data. The validation set, which the model has not seen 
 during training, is then used to evaluate the model’s performance. This process allows us to assess how 
 well the model can generalize its learned patterns to new data.Throughout the training process, 
 performance metrics are monitored such as accuracy, precision, and the F1 score. We examine the 
 learned weights within the model to scrutinize the model’s capability to identify and prioritize key 
 environmental factors affecting wildlife behavior. Ultimately, predicted paths could also be compared with 
 real data; elephants carve pathways into the landscape and these pathways are visible by satellite. 
 Simulated paths could be compared with existing pathways in areas without GPS data. 

 5 Results 

 Expected Results: 

 Upon successful training, we expect our model to identify key environmental and topographical variables 
 to show a clear indication that these factors influence the movement patterns of wildlife species, in this 
 case, elephants in Kruger National Park, South Africa. Our models, specifically designed to handle 
 complex datasets, are expected to generate accurate predictions showcasing how wildlife are forced to 
 adapt to varying environmental conditions. These predictions include movement feedback against shifts in 
 vegetation patterns, alterations in water availability, changes in the terrain, and/or anthropogenic 
 modifications such as urban development or agriculture. Such predictive abilities could shed light on 
 issues of habitat suitability, human-wildlife conflict,  migration patterns, or changes in the feeding and 
 mating behavior of the species. 

 We anticipate that our machine learning models will be able to accurately predict species movement 
 paths based on topographical and environmental variables through a multimodal approach. The first 
 model will not only consider existing movement data but will also synthesize this with the varying 
 environmental and land features to make sophisticated predictions about potential paths. This approach 
 will allow us to anticipate potential shifts in species movement resulting from changes in the landscape, 
 such as alterations in water availability or vegetation patterns and output a predicted path. 

 Additionally, we expect our model to generate realistic DEMs based on input GPS paths. By leveraging 
 the data derived from these paths, the model can help us visualize and understand the likely topographic 
 profiles that elephants prefer to navigate. This model output can provide unique insights into how specific 
 terrain features may influence the movements and behaviors of the elephants. 

 Actual Results: 

 Initial attempts to train a CNN and cWGAN on DEMs and land features resulted in poor outputs with the 
 model unable to identify relevant features. We hypothesized that the lack of substantial variation within 
 the land feature classifications could be a potential cause for this performance. 

 Given the close correlation between land features and topography, our focus pivoted to primarily working 
 on generating DEMs and focusing on the connections between paths and elevation. This shift proved 
 promising through the implementation of the pix2pix framework which provided a significant boost to the 
 quality of our results. The agent-based model effectively produced credible predicted paths, factoring in 



 varying times of the day and a predefined starting point. The resulting predictions were predominantly 
 consistent with typical elephant behaviors. We gauged the model's effectiveness by monitoring the 
 training and test loss (see figure 9). In general, the model demonstrated a satisfactory trend, despite 
 some observed inconsistencies. 

 However, it is important to clarify that due to certain constraints, the model's accuracy within the simulated 
 environment hasn't been quantitatively appraised yet. At this phase, we have managed to establish a 
 training pipeline for the agent-based model, which can simulate an elephant's movement. To enhance the 
 practicality of the tests, we simplified the scenario. This was necessitated by the absence of key data to 
 create a fully realistic environment. We currently lack comprehensive data that captures the movement of 
 an elephant group in unison. Moreover, data on other species, such as predators which significantly 
 influence elephant behavior, is missing. This absence of vital information means that the simulation 
 cannot yet mimic reality accurately. Hence, we have had to rely on the graph of training and test loss to 
 determine if the model is learning correctly from the dataset. 

 Looking ahead, we are devising ways to refine the 
 model. Firstly, we plan to employ transformers in 
 the training process, enhancing the model's 
 capability to handle time-sequential data more 
 efficiently. Secondly, we aim to collect more 
 comprehensive elephant data to improve path 
 predictions that may be influenced by elephant 
 social behaviors. We will also explore ways to 
 collect data on other influential species. Lastly, 
 we've observed patterns in the data suggesting that 
 decision-making frequency or triggers in elephants 
 may require further investigation. We hope to delve 
 deeper into this in future studies. 

 Figure 9: Train/Test Loss of Agent-Based Model 



 6 Future Research 

 Predictive RNNs 

 Predictive Recurrent Neural Networks (RNNs) have shown to be incredibly effective in handling time 
 series and sequential data, making them a promising tool for our purposes. Rew et. al’s work with swarm 
 and particle dynamics simulations sets an insightful precedent that we can adapt and build upon. Their 
 method of combining animal geolocation records with additional contextual data, such as weather and 
 terrain, offers a dynamic and sophisticated approach to understanding animal movement. This strategy 
 could be similarly applied to take advantage of the temporal nature of GPS data and combine it with rich 
 contextual data from land features and DEMs to create a comprehensive picture of the animal’s 
 interactions with its environment over time. 

 Similar to Rew et. al, we would utilize our dataset with an appropriate interpolation technique to refine the 
 movement pattern, treating the collected data as independent feature values. This technique would 
 enable us to capture and consider the nuances in the animal’s interactions with its environment. The 
 relocation records are split and movement density sequences are generated to represent the valid range 
 of elephant movement. These sequences would provide a temporal dimension to our data, capturing 
 changes in the elephant movement patterns and land feature interactions over time. We would then train 
 a predictive RNN on these movement density sequences to build our prediction model. The RNN, with its 
 ability to capture temporal dependencies and patterns in sequential data, is particularly well suited to 
 predicting future movement patterns based on past behavior and environmental context. 

 Agent-based Model 

 The  existing  agent-based  model  for  elephants  has  shown  potential  for  improvement,  and  we  have 
 outlined several plans to enhance its capabilities in the future. Our refinement strategies are as follows: 

 Incorporating  transformers:  To  enhance  the  model's  performance  with  time-sequential  data,  we  plan  to 
 integrate  transformer  architectures  during  the  training  process.  Transformers  have  proven  effective  in 
 capturing  long-range  dependencies  and  contextual  information,  which  can  greatly  benefit  the  analysis  of 
 temporal patterns in elephant behavior. 

 Gathering  extensive  elephant  data:  To  improve  path  predictions,  we  aim  to  gather  a  more  comprehensive 
 dataset  on  elephants.  This  expanded  dataset  will  include  a  broader  range  of  variables,  particularly 
 focusing  on  factors  related  to  elephant  social  behaviors.  By  incorporating  these  social  dynamics,  we  can 
 develop more accurate predictions of elephant movement and behavior patterns. 

 Data  collection  on  other  influential  species:  Recognizing  the  potential  impact  of  other  species  on  elephant 
 behavior,  we  intend  to  explore  methods  for  collecting  data  on  these  influential  species.  By  understanding 
 their  interactions  and  relationships  with  elephants,  we  can  refine  the  model  to  better  reflect  the  complex 
 dynamics of the ecosystem. 

 Investigating  decision-making  frequency  and  triggers:  Our  analysis  has  revealed  certain  patterns  in  the 
 data  that  suggest  a  need  for  further  investigation  into  decision-making  among  elephants.  Specifically,  we 
 have  observed  recurring  behaviors  that  indicate  the  presence  of  decision  points  or  triggers.  In  future 
 studies,  we  aspire  to  delve  deeper  into  this  aspect,  exploring  the  factors  that  influence  decision-making 
 frequency and identifying the specific triggers that prompt certain behaviors. 

 Interface and visualization of the Agent-based Model 

 In  addition  to  developing  the  agent-based  model  itself,  we  are  also  focusing  on  creating  an  intuitive 
 interface  and  visualization  system  that  enables  users  to  effectively  interact  with  and  visualize  the  outputs 
 of the model. 



 One  aspect  of  this  involves  designing  a  user-friendly  platform  that  enhances  the  user's  experience.  For 
 example,  we  plan  to  implement  a  map  interface  that  allows  users  to  easily  add  agents  representing 
 elephants  to  specific  locations  of  their  choice.  This  feature  will  enable  users  to  simulate  and  observe  the 
 behavior and interactions of elephants in different environments. 

 Furthermore,  we  aim  to  incorporate  interactive  elements  such  as  sliders  into  the  interface.  These  sliders 
 will  allow  users  to  adjust  various  parameters,  including  time  and  initial  motion  vectors.  By  providing  this 
 level  of  control,  users  will  be  able  to  customize  the  simulation  according  to  their  specific  interests  and 
 study the effects of different settings on the model's behavior. 

 Vector Field 

 One  promising  avenue  for  further  exploration  lies  in  the  utilization  of  vector  fields  for  representing  animal 
 movement  patterns.  A  vector  field  provides  a  visual  and  mathematical  depiction  of  the  velocity  of  animals 
 at  each  point  in  their  environment.  This  can  allow  for  a  richer  understanding  of  how  wildlife  species 
 interact with their environment and navigate based on various factors. 

 By  transforming  our  elephant  GPS  data  into  a 
 vector  field,  we  create  a  spatially  continuous  and 
 detailed  dataset  that  reflects  the  dynamic  nature  of 
 animal  movement.  Each  vector  in  this  field  would 
 represent  an  instance  of  an  elephant’s  direction 
 and  speed  at  a  specific  location.  The  magnitude 
 and  direction  of  the  vectors  provide  information 
 about  the  elephants’  behavior  and  its  relation  to 
 environmental  features,  capturing  subtle  details 
 that might otherwise be overlooked. 

 Given  the  temporal  and  spatial  characteristics  of 
 our  data,  RNNs,  specifically  Long  Short-Term 
 Memory  (LSTM)  networks,  could  be  suited  for 
 training on such a vector field dataset. 

 Figure 10: Vector Field Analysis 

 The  key  advantage  of  LSTMs  is  their  ability  to  learn  long-term  dependencies  due  to  their  unique  memory 
 cell  structure,  which  can  maintain  information  in  memory  for  long  periods.  Transformer-based  models 
 have  also  shown  remarkable  performance  on  sequence  prediction  tasks.  However,  these  models  are 
 complex  to  implement  and  require  more  computational  resources.  In  the  context  of  our  work,  the  LSTM 
 would  take  as  input  a  sequence  of  vectors  representing  an  elephant’s  past  movements  and  would  output 
 a  predicted  next  vector,  indicating  the  expected  direction  and  speed  of  the  elephant’s  next  movement.  By 
 training  the  LSTM  on  a  vector  field,  we  could  develop  a  model  capable  of  predicting  future  movements 
 based on their past behaviors and the environmental features of their habitat. 



 7 Conclusion and Contributions 

 This project takes on a multidisciplinary approach through machine learning tools and ecological 
 research, offering unique solutions to complex wildlife behavioral problems, specifically that of the African 
 elephant. The focus is not on modeling an elephant’s vision system, but rather on understanding the 
 connection between the animal’s movement and its environment. This approach not only contributes to 
 our knowledge of mammal memory systems but also enriches broader ecological research by advancing 
 machine learning applications within this domain. 

 Our predictive models, which stem from an understanding of the relationship between land features, 
 topography, and wildlife behavior, allow us to monitor species movements in real-time and anticipate 
 potential impacts of landscape changes. The real-time predictive capabilities of our models could be 
 instrumental for land management and land-use planning, offering foresight into the effects of various 
 landscape modifications. As GPS tracking technology improves, our model could reveal unseen 
 information about landscape use. Beyond academic research, the work serves as a dynamic conservation 
 tool, capable of guiding strategies aimed at mitigating potential harm to wildlife, contributing significantly 
 to conservation efforts and habitat management strategies. 
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