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‭1 Abstract‬

‭The ability to understand and predict the complex interactions between wildlife species and their‬
‭environments is crucial for effective conservation and wildlife management. This study aims to investigate‬
‭these interactions by integrating topographic and land feature data with wildlife movement (GPS) data,‬
‭and utilizing machine learning techniques to analyze patterns and predict how topographical or‬
‭environmental changes may affect wildlife behavior. Our approach is multifaceted and attempts to find‬
‭modal solutions for this complex problem. We utilize convolutional neural networks, Conditional‬
‭Generative Adversarial Networks and Agent-Based Modeling, to find the embedded multidimensional‬
‭relationships between 3D topographical information, land feature data and GPS tracking of animal‬
‭movement.‬

‭Figure 1: A conceptual framework for Elephant Movement Prediction‬

‭2 Introduction‬

‭The impacts of human land use changes and climate change are among the many factors that disrupt‬
‭wildlife behavior and the ecosystems that they critically rely on for survival. These pressures underscore‬
‭the critical need for more sophisticated, targeted interventions to ensure the preservation of non-human‬
‭species. Central to the development of these interventions is a comprehensive understanding of the‬
‭complex interplay between wildlife and their habitats, which in turn can elucidate the potential‬
‭ramifications of these disturbances and help inform on effective conservation strategies.‬

‭Analyzing animal movements is an important step toward understanding the complexity and fragility of‬
‭ecosystems and ecologies. Animal movements offer potential windows into habitat selection, population‬
‭dynamics, and group behavior. According to‬‭Rew et‬‭al. 2019‬‭, the development of global positioning‬
‭systems (GPS) and advanced research and global observation satellites (ARGOS) have accelerated‬
‭animal movements studies and created new opportunities to model these behaviors.‬

‭Moving beyond the traditional approach of fine-tuning a singular computational model to address a wildlife‬
‭behavioral research problem, we adopt a more holistic strategy. Our methodology focuses on the‬
‭investigation and implementation of multiple models and the interconnections between them to uncover‬
‭an array of predictions that inform one another. The intention is to foster an understanding of whether the‬
‭integration of these models can lead to a more robust and insightful understanding of wildlife behavior‬
‭and their interactions with the environment. We explore how different machine learning models, each with‬
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‭its unique attributes, can contribute to a comprehensive analytical framework that can identify patterns‬
‭that may not be apparent when using a singular model. Our goal is to provide a broader, multi-faceted‬
‭perspective on wildlife behavior, potentially leading to more effective conservation strategies.‬

‭3 Literature Review/Background‬

‭Many efforts have been made to model animal movements using both traditional statistical methods and‬
‭machine learning. Patterson et al, using maximum likelihood and Monte Carlo (MC) methods, and a‬
‭hidden Markov model (HMM), proposed a classification method for two animal behavior states: transient‬
‭and resident. Using hidden Markov processes, MoveHMM showed that probability-based prediction is‬
‭possible by using features such as animal step length and turning angle.‬

‭Deep learning has been used to fill the observation gap that frequently occurred while tracking wild‬
‭animals with low frequency gps technology.‬‭Hirakawa‬‭et al. 2018‬‭used inverse reinforcement learning to‬
‭predict missing trajectories by estimating the gap as a reward function.‬‭Browning et al. 2018‬‭predict‬‭diving‬
‭behavior of seabirds by utilizing combined GPS and time depth record (TDR) from 108 individuals. The‬
‭authors trained deep learning models for predicting the behavior of European shags, common guillemots,‬
‭and razorbills, and achieved 94% and 80% prediction accuracy of non-diving and diving behavior.‬

‭According to‬‭Tuia et al. 2022‬‭, inexpensive and accessible‬‭sensors are and will continue to accelerate‬
‭data acquisition in animal ecology. There are immense opportunities for large-scale ecological‬
‭understanding, but these tools are limited by current processing approaches which inefficiently distill data‬
‭into information for ecologists, local communities and conservation efforts to use effectively.‬‭Tuia‬‭et al.‬
‭argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining‬
‭machine learning approaches with domain knowledge and by incorporating machine learning into‬
‭ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling‬
‭tools.‬

‭Parvizpalangpour, Venayagamoorthy, and Duffy 2011‬‭describe methods to assess the impact of large‬
‭nutritional values and destructive foraging of Elephants in South African wildlife reserves using particle‬
‭swarm optimization (PSO), PSO initialized backpropagation and PSO initialized backpropagation through‬
‭time algorithms to adapt a recurrent neural network's weights for migration prediction.‬

‭(Rew et al. 2019)‬‭proposed a novel approach for predicting‬‭animal movements using a predictive‬
‭recurrent neural network (RNN). Their model compensates for missing geolocation records using random‬
‭forest regression. They interpolate the missing records by using a random forest based on animal‬
‭movement features and environmental features such as terrain and weather. The authors then grouped‬
‭geolocations by various units and created a sequence of movement density images, which represent‬
‭movement trends of animals; a movement prediction model is then built by training PredRNN++ using‬
‭these sequence data.‬

‭Berti et al. 2022‬‭developed ‘enerscape’, software‬‭that​​ integrates a general locomotory model for terrestrial‬
‭animals with GIS tools in order to map energy costs of movement in a given environment, resulting in‬
‭energy landscapes that reflect how energy expenditures may shape habitat use.‬‭enerscape‬‭only requires‬
‭topographic data (elevation) and the body mass of the studied animal. Other work in the field of machine‬
‭learning and behavioral wildlife ecology is concerned with automatically identifying, counting, and‬
‭describing wild animals in camera-trap images with deep learning‬‭(Norouzzadeh et al. 2018)‬‭and deep‬
‭learning for pose tracking‬‭(Pereira et al. 2022)‬‭.‬

‭Predictive analysis of wildlife behavior is a crucial tool for long term conservation efforts, currently there‬
‭are no effective working models to predict where wildlife will move to next given a topographical or land‬
‭feature change. The ability to predict future movements of a species would provide a useful tool for land‬
‭management by assessing the future impact of a species by location and proposed land augmentation.‬
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‭4 Methodology‬

‭Our research focussed on a selected species and specific geographical area. Data collection involved the‬
‭acquisition of  3D topographical data, wildlife GPS data, and integrating these datasets for analysis. We‬
‭attempted to employ multimodal machine learning techniques to model species movement patterns in‬
‭response to topographical and environmental features.‬

‭Dataset:‬

‭This research required the creation of a comprehensive dataset that combines Global Positional System‬
‭(GPS) data, Digital Elevation Model (DEM) data, and land features suitable for machine learning analysis.‬
‭The combination of these different sources of data offers a rich and varied dataset that facilitates a‬
‭deeper understanding of the complex connections between wildlife species and their environments.‬

‭The GPS data utilized in this study is sourced from research led by Frank van Langevelde from the‬
‭Wildlife Ecology and Conservation Group at Wageningen University. Published in the Journal of Animal‬
‭Ecology in 2011, the study “The spatial scaling of habitat selection by African elephants” offers valuable‬
‭insights into the spatial scales at which African elephants select their habitats. This research focuses on‬
‭13 elephants with GPS collars located in Kruger National Park, South Africa, spanning from November‬
‭12, 2005, to September 21, 2008 and covering 160,000 square kilometers. This dataset contains location,‬
‭temperature, low frequency time steps (30 minute intervals)  and observational data of elephant behavior‬
‭such as foraging, drinking, walking and group interaction. Kruger National Park, one of Africa’s largest‬
‭game reserves, is known for its high biodiversity. It offers a complex and diverse landscape, from‬
‭savannah grasslands to dense forests and river systems, making it a compelling area of study for‬
‭understanding wildlife interactions with varied topography and land features. Leveraging the data from‬
‭this well-established study, our research further builds upon these insights by employing advanced‬
‭machine learning techniques to predict how topographical changes may impact wildlife behavior. The data‬
‭is made available through Movebank, an online database of animal tracking data hosted by the Max‬
‭Planck Institute of Animal Behavior. Movebank facilitates the archiving, analysis, and sharing of animal‬
‭movement data among researchers and conservationists.‬

‭Figure 2: GPS elephant data, DEM and Land Features  of Kruger National Park‬

‭In tandem with the GPS data, our dataset also employs the land features obtained from the National Land‬
‭Cover Database (NLCD) and Digital Elevation Models (DEM) from the Shuttle Radar Topography Mission‬
‭at 30m resolution. The NLCD data offers a standardized, nationwide land cover inventory which, in‬
‭combination with the DEMs, offers a detailed understanding of the terrain.‬

‭To render the data more manageable for the machine learning model, the NLCD data was processed into‬
‭three general categories: water, ground, and vegetation. This simplification was aimed at preventing the‬
‭model from being overwhelmed with excessive detail that could potentially obscure broader patterns,‬



‭thereby enabling the model to between learn and predict elephants’ behavior in response to fundamental‬
‭environmental features. The compilation of this dataset from diverse resources provides an important‬
‭foundation for analyzing the interactions between wildlife and their habitats. Furthermore, the systematic‬
‭approach used to creat this  dataset creation for application in machine learning holds significant potential‬
‭for future research, particularly those exploring the interface between wildlife behavior and environmental‬
‭factors.‬

‭Models:‬

‭Test 01: Convolutional Neural Network‬

‭We attempted to train a convolutional neural network with the intention of using an inverse design method‬
‭similar to those used for metasurface design. We conceptualized a model that formulated the path‬
‭functionality as an objective function and performed an optimization task that could be subject to‬
‭constraints. In the case of the predictive path finding, the constraints were DEMs and land features. Our‬
‭intention was to define a desired target DEM and have the trained network predict paths. This method‬
‭was unsuccessful due to the large variation in data between constraints.‬

‭Figure 3: Result and Training/Validation Loss of CNN‬



‭Test 02: Pix2Pix Conditional Generative Adversarial Network‬

‭We also considered the prediction of paths from a DEM as an image-to-image translation problem. For‬
‭this problem, we used conditional adversarial networks as a general-purpose solution for image-to-image‬
‭translation. These networks not only learn the mapping from input image to output image, but also learn a‬
‭loss function to train this mapping. I‬‭sola et al.‬‭2018‬‭demonstrate that this approach is effective at‬
‭synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images,‬
‭among other tasks. This solution however requires the translation of GPS vector data (that includes‬
‭directionality and time) to static raster based images. The same technique could also be inverted and‬
‭used to predict DEMs from path configurations.‬

‭Figure 4: Result of GAN network tests - inconclusive‬
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‭Test 03: Agent Based Model‬

‭We also developed an agent-based model (ABM) to visualize and simulate how an elephant behaves in a‬
‭specific environment. To achieve this, the model utilizes the GPS portion of the dataset. The geolocation‬
‭of the elephant's position is then associated to a position within the land features dataset. A bounding box‬
‭is created to track the elephant's motion and extract relevant data in the surrounding area.‬

‭Figure 5: The mechanism of the agent based elephant model‬

‭This process allows for the generation of a series of data that includes geolocations, corresponding‬
‭vectors representing the elephant's behavior, and data representing the environment at each geolocation.‬
‭By combining the elephant's trajectory with the corresponding environmental data, a comprehensive‬
‭understanding of how the elephant interacts with its surroundings can be obtained.‬

‭The agent-based model described includes a CNN-based neural network that aims to predict the next‬
‭motion of an agent, specifically an elephant. The model takes into consideration the environmental‬
‭surrounds of the agent, including topographical information, land features, and existing movement data of‬
‭the elephant; these data are then represented as 2D arrays. To process the input data, the model‬
‭combines the terrain, land features, and elephant's footprint into a three-channel representation. This‬
‭combined data is then fed into a CNN encoder, which is responsible for extracting relevant features from‬
‭the input data. The CNN encoder applies convolutional and pooling layers to capture patterns and‬
‭condense information. The output of the encoder is a condensed and abstract representation of the input‬
‭data. The features obtained from the CNN encoder are then flattened and the previous directional data‬
‭(represented as a 2D vector) and the timestep information are concatenated with the flattened features.‬
‭This concatenation combines the visual features learned by the CNN encoder with the historical motion‬
‭information and temporal context. The concatenated data is then passed through a series of hidden‬
‭layers, including fully connected layers with activation functions‬‭Tanh‬‭and‬‭LeakyRelu‬‭, to produce a‬
‭two-dimensional output. The output data represents the rotation angle and speed that the agent, in this‬
‭case the elephant, should take for its next step. The architecture of the model is described in figure 8.‬

‭Figure 6: Architecture of the CNN based model for simulating elephant walking‬



‭The initial version of the model used a vector representation for motion, but the results were not‬
‭satisfactory. Therefore, the model was adjusted to utilize the angle and speed representation, which was‬
‭found to provide more realistic predictions.‬

‭Test 04: Simulator‬

‭Finally, a dedicated simulator was developed utilizing the ABM. This simulator incorporates the DEM, land‬
‭features, and the elephant footprint map which serves as the backdrop for the simulation. To simulate the‬
‭walking path of an elephant, the simulator allows the user to specify the initial location (geolocation) of the‬
‭elephant, its initial motion (2D vector), and the time parameters. Based on these inputs, the model‬
‭predicts a new motion for the elephant's next move, which includes both a turning angle and speed.‬

‭Once the elephant agent is given its starting position, the system tracks the elephant's position and crops‬
‭a new environmental bounding box for the subsequent iteration. This ensures that the model takes into‬
‭account the updated surroundings as the elephant progresses along its path. With each iteration, a series‬
‭of points emerge, gradually forming a coherent path that represents the simulated movement of the‬
‭elephant.‬

‭The simulator and agent-based model work in succession to  integrate topographical, land feature and‬
‭GPS data to predict elephant movement. Users can set the initial location, initial motion, and time‬
‭parameters for the elephant. The model then predicts the next step distance, direction, turning angle and‬
‭speed of the elephant. As the simulation progresses, the system tracks the elephant's movement,‬
‭updates the environment accordingly, and generates a series of points that ultimately form a path,‬
‭capturing the simulated walking trajectory of the elephant.‬

‭Figure 9 showcases different conditions simulated by the agent-based model. In the image on the‬
‭right-hand side, a time cycle is introduced, with a period of 30 minutes between each point. the time‬
‭updates throughout the simulation, allowing the elephant agent to experience varying conditions from‬
‭daytime to nighttime. This dynamic time setting provides insights into how the elephant's behavior may‬
‭differ at different times of the day.‬

‭The subsequent two images depict surreal conditions where time is fixed. In the middle image, the time is‬
‭constantly set at noon, while in the right-hand image, the time is continuously set at midnight. These‬
‭fixed-time scenarios enable the observation of the accumulating points (path) to gain a deeper‬
‭understanding of how elephant behavior may differ between daytime and nighttime settings. Building on‬
‭the research by Frank van Langevelde, the resulting paths in these different temporal contexts may‬
‭provide researchers with valuable insights into how elephants navigate and interact with their environment‬
‭at distinct times of the day. These simulated conditions provide a unique perspective on the behavioral‬
‭patterns of elephants, shedding light on potential variations influenced by time factors.‬

‭Figure 7: Temporal Influence on Elephant Walking Patterns.‬



‭Evaluation:‬

‭The success of our research is measured by the model’s accuracy in predicting species movement‬
‭patterns, its understanding of crucial environmental factors influencing wildlife behavior, and the ability to‬
‭derive effective conservation strategies based on these insights.‬

‭To evaluate our model’s performance, we implement the hold-out validation method, which is an effective‬
‭technique to ensure the robustness of the model and prevent overfitting. We partition our dataset into a‬
‭training set (80%) and validation set (20%). The model is trained on the training set, learning the‬
‭underlying patterns and relationships within the data. The validation set, which the model has not seen‬
‭during training, is then used to evaluate the model’s performance. This process allows us to assess how‬
‭well the model can generalize its learned patterns to new data.Throughout the training process,‬
‭performance metrics are monitored such as accuracy, precision, and the F1 score. We examine the‬
‭learned weights within the model to scrutinize the model’s capability to identify and prioritize key‬
‭environmental factors affecting wildlife behavior. Ultimately, predicted paths could also be compared with‬
‭real data; elephants carve pathways into the landscape and these pathways are visible by satellite.‬
‭Simulated paths could be compared with existing pathways in areas without GPS data.‬

‭5 Results‬

‭Expected Results:‬

‭Upon successful training, we expect our model to identify key environmental and topographical variables‬
‭to show a clear indication that these factors influence the movement patterns of wildlife species, in this‬
‭case, elephants in Kruger National Park, South Africa. Our models, specifically designed to handle‬
‭complex datasets, are expected to generate accurate predictions showcasing how wildlife are forced to‬
‭adapt to varying environmental conditions. These predictions include movement feedback against shifts in‬
‭vegetation patterns, alterations in water availability, changes in the terrain, and/or anthropogenic‬
‭modifications such as urban development or agriculture. Such predictive abilities could shed light on‬
‭issues of habitat suitability, human-wildlife conflict,  migration patterns, or changes in the feeding and‬
‭mating behavior of the species.‬

‭We anticipate that our machine learning models will be able to accurately predict species movement‬
‭paths based on topographical and environmental variables through a multimodal approach. The first‬
‭model will not only consider existing movement data but will also synthesize this with the varying‬
‭environmental and land features to make sophisticated predictions about potential paths. This approach‬
‭will allow us to anticipate potential shifts in species movement resulting from changes in the landscape,‬
‭such as alterations in water availability or vegetation patterns and output a predicted path.‬

‭Additionally, we expect our model to generate realistic DEMs based on input GPS paths. By leveraging‬
‭the data derived from these paths, the model can help us visualize and understand the likely topographic‬
‭profiles that elephants prefer to navigate. This model output can provide unique insights into how specific‬
‭terrain features may influence the movements and behaviors of the elephants.‬

‭Actual Results:‬

‭Initial attempts to train a CNN and cWGAN on DEMs and land features resulted in poor outputs with the‬
‭model unable to identify relevant features. We hypothesized that the lack of substantial variation within‬
‭the land feature classifications could be a potential cause for this performance.‬

‭Given the close correlation between land features and topography, our focus pivoted to primarily working‬
‭on generating DEMs and focusing on the connections between paths and elevation. This shift proved‬
‭promising through the implementation of the pix2pix framework which provided a significant boost to the‬
‭quality of our results. The agent-based model effectively produced credible predicted paths, factoring in‬



‭varying times of the day and a predefined starting point. The resulting predictions were predominantly‬
‭consistent with typical elephant behaviors. We gauged the model's effectiveness by monitoring the‬
‭training and test loss (see figure 9). In general, the model demonstrated a satisfactory trend, despite‬
‭some observed inconsistencies.‬

‭However, it is important to clarify that due to certain constraints, the model's accuracy within the simulated‬
‭environment hasn't been quantitatively appraised yet. At this phase, we have managed to establish a‬
‭training pipeline for the agent-based model, which can simulate an elephant's movement. To enhance the‬
‭practicality of the tests, we simplified the scenario. This was necessitated by the absence of key data to‬
‭create a fully realistic environment. We currently lack comprehensive data that captures the movement of‬
‭an elephant group in unison. Moreover, data on other species, such as predators which significantly‬
‭influence elephant behavior, is missing. This absence of vital information means that the simulation‬
‭cannot yet mimic reality accurately. Hence, we have had to rely on the graph of training and test loss to‬
‭determine if the model is learning correctly from the dataset.‬

‭Looking ahead, we are devising ways to refine the‬
‭model. Firstly, we plan to employ transformers in‬
‭the training process, enhancing the model's‬
‭capability to handle time-sequential data more‬
‭efficiently. Secondly, we aim to collect more‬
‭comprehensive elephant data to improve path‬
‭predictions that may be influenced by elephant‬
‭social behaviors. We will also explore ways to‬
‭collect data on other influential species. Lastly,‬
‭we've observed patterns in the data suggesting that‬
‭decision-making frequency or triggers in elephants‬
‭may require further investigation. We hope to delve‬
‭deeper into this in future studies.‬

‭Figure 9: Train/Test Loss of Agent-Based Model‬



‭6 Future Research‬

‭Predictive RNNs‬

‭Predictive Recurrent Neural Networks (RNNs) have shown to be incredibly effective in handling time‬
‭series and sequential data, making them a promising tool for our purposes. Rew et. al’s work with swarm‬
‭and particle dynamics simulations sets an insightful precedent that we can adapt and build upon. Their‬
‭method of combining animal geolocation records with additional contextual data, such as weather and‬
‭terrain, offers a dynamic and sophisticated approach to understanding animal movement. This strategy‬
‭could be similarly applied to take advantage of the temporal nature of GPS data and combine it with rich‬
‭contextual data from land features and DEMs to create a comprehensive picture of the animal’s‬
‭interactions with its environment over time.‬

‭Similar to Rew et. al, we would utilize our dataset with an appropriate interpolation technique to refine the‬
‭movement pattern, treating the collected data as independent feature values. This technique would‬
‭enable us to capture and consider the nuances in the animal’s interactions with its environment. The‬
‭relocation records are split and movement density sequences are generated to represent the valid range‬
‭of elephant movement. These sequences would provide a temporal dimension to our data, capturing‬
‭changes in the elephant movement patterns and land feature interactions over time. We would then train‬
‭a predictive RNN on these movement density sequences to build our prediction model. The RNN, with its‬
‭ability to capture temporal dependencies and patterns in sequential data, is particularly well suited to‬
‭predicting future movement patterns based on past behavior and environmental context.‬

‭Agent-based Model‬

‭The‬ ‭existing‬ ‭agent-based‬ ‭model‬ ‭for‬ ‭elephants‬ ‭has‬ ‭shown‬ ‭potential‬ ‭for‬ ‭improvement,‬ ‭and‬ ‭we‬ ‭have‬
‭outlined several plans to enhance its capabilities in the future. Our refinement strategies are as follows:‬

‭Incorporating‬ ‭transformers:‬ ‭To‬ ‭enhance‬ ‭the‬ ‭model's‬ ‭performance‬ ‭with‬ ‭time-sequential‬ ‭data,‬ ‭we‬‭plan‬‭to‬
‭integrate‬ ‭transformer‬ ‭architectures‬ ‭during‬ ‭the‬ ‭training‬ ‭process.‬ ‭Transformers‬ ‭have‬ ‭proven‬ ‭effective‬ ‭in‬
‭capturing‬‭long-range‬‭dependencies‬‭and‬‭contextual‬‭information,‬‭which‬‭can‬‭greatly‬‭benefit‬‭the‬‭analysis‬‭of‬
‭temporal patterns in elephant behavior.‬

‭Gathering‬‭extensive‬‭elephant‬‭data:‬‭To‬‭improve‬‭path‬‭predictions,‬‭we‬‭aim‬‭to‬‭gather‬‭a‬‭more‬‭comprehensive‬
‭dataset‬ ‭on‬ ‭elephants.‬ ‭This‬ ‭expanded‬ ‭dataset‬ ‭will‬ ‭include‬ ‭a‬ ‭broader‬ ‭range‬ ‭of‬ ‭variables,‬ ‭particularly‬
‭focusing‬‭on‬‭factors‬‭related‬‭to‬‭elephant‬‭social‬‭behaviors.‬‭By‬‭incorporating‬‭these‬‭social‬‭dynamics,‬‭we‬‭can‬
‭develop more accurate predictions of elephant movement and behavior patterns.‬

‭Data‬‭collection‬‭on‬‭other‬‭influential‬‭species:‬‭Recognizing‬‭the‬‭potential‬‭impact‬‭of‬‭other‬‭species‬‭on‬‭elephant‬
‭behavior,‬‭we‬‭intend‬‭to‬‭explore‬‭methods‬‭for‬‭collecting‬‭data‬‭on‬‭these‬‭influential‬‭species.‬‭By‬‭understanding‬
‭their‬‭interactions‬‭and‬‭relationships‬‭with‬‭elephants,‬‭we‬‭can‬‭refine‬‭the‬‭model‬‭to‬‭better‬‭reflect‬‭the‬‭complex‬
‭dynamics of the ecosystem.‬

‭Investigating‬ ‭decision-making‬ ‭frequency‬ ‭and‬ ‭triggers:‬ ‭Our‬ ‭analysis‬ ‭has‬‭revealed‬‭certain‬‭patterns‬‭in‬‭the‬
‭data‬‭that‬‭suggest‬‭a‬‭need‬‭for‬‭further‬‭investigation‬‭into‬‭decision-making‬‭among‬‭elephants.‬‭Specifically,‬‭we‬
‭have‬ ‭observed‬ ‭recurring‬ ‭behaviors‬ ‭that‬ ‭indicate‬ ‭the‬ ‭presence‬ ‭of‬ ‭decision‬ ‭points‬ ‭or‬ ‭triggers.‬ ‭In‬ ‭future‬
‭studies,‬ ‭we‬ ‭aspire‬ ‭to‬ ‭delve‬‭deeper‬‭into‬‭this‬‭aspect,‬‭exploring‬‭the‬‭factors‬‭that‬‭influence‬‭decision-making‬
‭frequency and identifying the specific triggers that prompt certain behaviors.‬

‭Interface and visualization of the Agent-based Model‬

‭In‬ ‭addition‬ ‭to‬ ‭developing‬ ‭the‬ ‭agent-based‬ ‭model‬ ‭itself,‬ ‭we‬ ‭are‬ ‭also‬ ‭focusing‬ ‭on‬ ‭creating‬ ‭an‬ ‭intuitive‬
‭interface‬‭and‬‭visualization‬‭system‬‭that‬‭enables‬‭users‬‭to‬‭effectively‬‭interact‬‭with‬‭and‬‭visualize‬‭the‬‭outputs‬
‭of the model.‬



‭One‬ ‭aspect‬ ‭of‬ ‭this‬ ‭involves‬ ‭designing‬‭a‬‭user-friendly‬‭platform‬‭that‬‭enhances‬‭the‬‭user's‬‭experience.‬‭For‬
‭example,‬ ‭we‬ ‭plan‬ ‭to‬ ‭implement‬ ‭a‬ ‭map‬ ‭interface‬ ‭that‬ ‭allows‬ ‭users‬ ‭to‬ ‭easily‬ ‭add‬ ‭agents‬ ‭representing‬
‭elephants‬‭to‬‭specific‬‭locations‬‭of‬‭their‬‭choice.‬‭This‬‭feature‬‭will‬‭enable‬‭users‬‭to‬‭simulate‬‭and‬‭observe‬‭the‬
‭behavior and interactions of elephants in different environments.‬

‭Furthermore,‬‭we‬‭aim‬‭to‬‭incorporate‬‭interactive‬‭elements‬‭such‬‭as‬‭sliders‬‭into‬‭the‬‭interface.‬‭These‬‭sliders‬
‭will‬ ‭allow‬ ‭users‬ ‭to‬‭adjust‬‭various‬‭parameters,‬‭including‬‭time‬‭and‬‭initial‬‭motion‬‭vectors.‬‭By‬‭providing‬‭this‬
‭level‬ ‭of‬ ‭control,‬ ‭users‬ ‭will‬ ‭be‬ ‭able‬ ‭to‬ ‭customize‬ ‭the‬ ‭simulation‬ ‭according‬ ‭to‬ ‭their‬‭specific‬‭interests‬‭and‬
‭study the effects of different settings on the model's behavior.‬

‭Vector Field‬

‭One‬‭promising‬‭avenue‬‭for‬‭further‬‭exploration‬‭lies‬‭in‬‭the‬‭utilization‬‭of‬‭vector‬‭fields‬‭for‬‭representing‬‭animal‬
‭movement‬‭patterns.‬‭A‬‭vector‬‭field‬‭provides‬‭a‬‭visual‬‭and‬‭mathematical‬‭depiction‬‭of‬‭the‬‭velocity‬‭of‬‭animals‬
‭at‬ ‭each‬ ‭point‬ ‭in‬ ‭their‬ ‭environment.‬ ‭This‬ ‭can‬ ‭allow‬ ‭for‬ ‭a‬ ‭richer‬ ‭understanding‬ ‭of‬ ‭how‬ ‭wildlife‬ ‭species‬
‭interact with their environment and navigate based on various factors.‬

‭By‬ ‭transforming‬ ‭our‬ ‭elephant‬ ‭GPS‬ ‭data‬ ‭into‬ ‭a‬
‭vector‬ ‭field,‬ ‭we‬ ‭create‬ ‭a‬ ‭spatially‬ ‭continuous‬ ‭and‬
‭detailed‬‭dataset‬‭that‬‭reflects‬‭the‬‭dynamic‬‭nature‬‭of‬
‭animal‬ ‭movement.‬ ‭Each‬ ‭vector‬ ‭in‬ ‭this‬ ‭field‬‭would‬
‭represent‬ ‭an‬ ‭instance‬ ‭of‬ ‭an‬ ‭elephant’s‬ ‭direction‬
‭and‬ ‭speed‬ ‭at‬ ‭a‬ ‭specific‬ ‭location.‬ ‭The‬ ‭magnitude‬
‭and‬ ‭direction‬ ‭of‬ ‭the‬ ‭vectors‬ ‭provide‬ ‭information‬
‭about‬ ‭the‬ ‭elephants’‬ ‭behavior‬ ‭and‬ ‭its‬ ‭relation‬ ‭to‬
‭environmental‬ ‭features,‬ ‭capturing‬ ‭subtle‬ ‭details‬
‭that might otherwise be overlooked.‬

‭Given‬ ‭the‬ ‭temporal‬ ‭and‬ ‭spatial‬ ‭characteristics‬ ‭of‬
‭our‬ ‭data,‬ ‭RNNs,‬ ‭specifically‬ ‭Long‬ ‭Short-Term‬
‭Memory‬ ‭(LSTM)‬ ‭networks,‬ ‭could‬ ‭be‬ ‭suited‬ ‭for‬
‭training on such a vector field dataset.‬

‭Figure 10: Vector Field Analysis‬

‭The‬‭key‬‭advantage‬‭of‬‭LSTMs‬ ‭is‬‭their‬‭ability‬‭to‬‭learn‬‭long-term‬‭dependencies‬‭due‬‭to‬‭their‬‭unique‬‭memory‬
‭cell‬ ‭structure,‬ ‭which‬ ‭can‬ ‭maintain‬ ‭information‬ ‭in‬ ‭memory‬ ‭for‬ ‭long‬ ‭periods.‬ ‭Transformer-based‬ ‭models‬
‭have‬ ‭also‬ ‭shown‬ ‭remarkable‬ ‭performance‬ ‭on‬ ‭sequence‬ ‭prediction‬ ‭tasks.‬ ‭However,‬ ‭these‬ ‭models‬ ‭are‬
‭complex‬ ‭to‬ ‭implement‬‭and‬‭require‬‭more‬‭computational‬‭resources.‬‭In‬‭the‬‭context‬‭of‬‭our‬‭work,‬‭the‬‭LSTM‬
‭would‬‭take‬‭as‬‭input‬‭a‬‭sequence‬‭of‬‭vectors‬‭representing‬‭an‬‭elephant’s‬‭past‬‭movements‬‭and‬‭would‬‭output‬
‭a‬‭predicted‬‭next‬‭vector,‬‭indicating‬‭the‬‭expected‬‭direction‬‭and‬‭speed‬‭of‬‭the‬‭elephant’s‬‭next‬‭movement.‬‭By‬
‭training‬ ‭the‬ ‭LSTM‬ ‭on‬ ‭a‬ ‭vector‬ ‭field,‬‭we‬‭could‬‭develop‬‭a‬‭model‬‭capable‬‭of‬‭predicting‬‭future‬‭movements‬
‭based on their past behaviors and the environmental features of their habitat.‬



‭7 Conclusion and Contributions‬

‭This project takes on a multidisciplinary approach through machine learning tools and ecological‬
‭research, offering unique solutions to complex wildlife behavioral problems, specifically that of the African‬
‭elephant. The focus is not on modeling an elephant’s vision system, but rather on understanding the‬
‭connection between the animal’s movement and its environment. This approach not only contributes to‬
‭our knowledge of mammal memory systems but also enriches broader ecological research by advancing‬
‭machine learning applications within this domain.‬

‭Our predictive models, which stem from an understanding of the relationship between land features,‬
‭topography, and wildlife behavior, allow us to monitor species movements in real-time and anticipate‬
‭potential impacts of landscape changes. The real-time predictive capabilities of our models could be‬
‭instrumental for land management and land-use planning, offering foresight into the effects of various‬
‭landscape modifications. As GPS tracking technology improves, our model could reveal unseen‬
‭information about landscape use. Beyond academic research, the work serves as a dynamic conservation‬
‭tool, capable of guiding strategies aimed at mitigating potential harm to wildlife, contributing significantly‬
‭to conservation efforts and habitat management strategies.‬
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